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Joint POS Tagging and Dependence Parsing With
Transition-Based Neural Networks

Liner Yang, Meishan Zhang, Yang Liu, Maosong Sun, Nan Yu, and Guohong Fu

Abstract—While part-of-speech (POS) tagging and dependency
parsing are observed to be closely related, existing work on joint
modeling with manually crafted feature templates suffers from
the feature sparsity and incompleteness problems. In this paper,
we propose an approach to joint POS tagging and dependency
parsing using transition-based neural networks. Three neural net-
work based classifiers are designed to resolve shift/reduce, tagging,
and labeling conflicts. Experiments show that our approach signif-
icantly outperforms previous methods for joint POS tagging and
dependency parsing across a variety of natural languages.

Index Terms—Dependency parsing, joint model, neural net-
works, part-of-speech tagging.

I. INTRODUCTION

PART-OF-SPEECH (POS) tagging [1]–[4] and dependency
parsing [5]–[9] are two fundamental tasks for understand-

ing natural languages. While POS tagging aims to assign parts
of speech to words in a text to indicate their word categories, the
goal of dependency parsing is to analyze the syntactic structure
of sentences by establishing relationships between words.

It is widely accepted that POS tagging and dependency
parsing are closely related. On one hand, POS tagging often
requires long-distance syntactic information for resolving
tagging ambiguity [10]. Hatori et al. [11] indicate that the
disambiguation between POS tags “DEG” (a genitive marker)
and “DEC” (a complementizer) for a Chinese word de often
depends on global context. On the other hand, as a pre-
processing step, POS tagging directly influences the accuracy
of dependency parsing significantly. For example, determining
the head word of a two-word phrase “closed door” directly
depends on the POS tag of “closed” (adjective or verb in past
tense). Li et al. [12] report that dependency accuracy drops by
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around 6% on Chinese when automatic POS tagging results
instead of ground-truth tags are used.

Therefore, joint POS tagging and dependency parsing has
attracted intensive attention in the NLP community. Previous
work has focused on jointly modeling POS tagging and depen-
dency parsing using linear models that combine both tagging
and parsing features [11]–[15]. Allowing lexicality and syntax
to interact in a unified framework, joint POS tagging and depen-
dency parsing improves both tagging and parsing performance
over independent modeling significantly [11]–[13].

However, existing work on joint POS tagging and depen-
dency parsing suffers from the feature sparsity and incomplete-
ness problems. Chen and Manning [7] indicate that lexicalized
indicator features indispensable for discriminative dependency
parsing are usually highly sparse. The situation in joint POS
tagging and dependency parsing is much more severe because
tagging and parsing features are concatenated in joint models
[12]. Moreover, due to the complexity of tagging and parsing
natural languages, it is hard for manually-designed features to
cover all regularities. As a result, the incompleteness of feature
design is considered as an unavoidable issue in conventional
discriminative models [7].

In this paper, we propose an approach to joint POS tagging
and dependency parsing with neural networks by extending
from a transition-based dependency parsing model. Three neu-
ral network based classifiers are designed to resolve the conflicts
of transition actions, respectively for shift/reduce (dependency
parse tree skeletons), tagging (POS tagging), and labeling (de-
pendency label) disambiguations. Experiments show that our
approach significantly outperforms previous methods for joint
POS tagging and dependency parsing on three treebanks across
eight natural languages.

II. APPROACH

A. Problem Statement

As shown in Fig. 1, given an English sentence “He won the
game”, the corresponding tag sequence is “PRP VBD DT NN”.
These tags indicate the part of speech of each word: “He” is
a personal pronoun, “won” is a verb in past tense, “the” is a
determiner, and “game” is a noun.

Fig. 1 also shows a dependency tree, which is a collection of
dependency arcs. The leftmost arc between the first two words
indicates that “won” is a head word, “He” is a modifier, and the
syntactic label “nsubj” suggests that “He” is a nominal subject.
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TABLE I
TRANSITIONS FOR JOINT POS TAGGING AND DEPENDENCY PARSING

Transition Definition Condition

SHIFT 〈S, xn |B, T, D〉 ⇒ 〈S |xn , B, T , D〉 |B | > 0 ∧ |T | = N − |B | ∧D−1 .l �= ⊥
LEFT 〈S |xm |xh , B, T , D〉 ⇒ 〈S |xh , B, T , D ∪ {〈h, m,⊥〉}〉 |S | > 1 ∧ |T | = N − |B | ∧D−1 .l �= ⊥
RIGHT 〈S |xh |xm , B, T , D〉 ⇒ 〈S |xh , B, T , D ∪ {〈h, m,⊥〉}〉 |S | > 1 ∧ |T | = N − |B | ∧D−1 .l �= ⊥
TAGt 〈S, B, T , D〉 ⇒ 〈S, B, T ∪ {t}, D〉 |T | = N − |B | − 1
LABELl 〈S |xh , B, T , D ∪ {〈h, m,⊥〉 ⇒ 〈S |xh , B, T , D ∪ {〈h, m, l〉}〉 D−1 .l = ⊥

We use a quadruple 〈S, B , T , D 〉 to denote a configuration, which consists of a stack S , a buffer B , a tag sequence T , and a dependency arc set
D . We define five categories of actions SHIFT (moving a word from the buffer to the stack), LEFT (generating a right-headed dependency arc),
RIGHT (generating a left-headed dependency arc), TAGt (tagging the last word moved into stack as t), and LABELl (labeling the last generated
arc as l) for the transitions between configurations. We use ⊥ to denote an undefined syntactic label, and D−1 .l to denote the syntactic label
of the last generated dependency arc. N is the length of the input sentence.

Fig. 1. Part-of-speech tagging and dependency parsing. Given an En-
glish sentence “He won the game”, our goal is to predict its correspond-
ing part-of-speech tag sequence “PRP VBD DT NN” and dependency tree
{〈2, 1, nsubj〉, 〈4, 3, det〉, 〈2, 4, dobj〉}.

More formally, given a natural language sentence x =
x1 , . . . , xN , we denote its corresponding POS tag sequence
as t = t1 , . . . , tN , where t ∈ T is a POS tag and T is a set
of all possible tags. A dependency tree is denoted by d =
{〈h,m, l〉|0 < h ≤ N, 0 < m ≤ N, l ∈ L}. We use 〈h,m, l〉 to
represent a dependency arc, where xh is a head word, xm is a
modifier, and l is syntactic label. We use L to denote the set
of all possible syntactic labels. The dependency tree in Fig. 1
consists of three arcs: 〈2, 1, nsubj〉, 〈2, 4, dobj〉, and 〈4, 3, det〉.

Therefore, the goal of our work is to generate a tag sequence
t and a dependency tree d for a given sentence x.

B. Transition System

In this work, we leverage a transition-based approach [16] to
joint POS tagging and dependency parsing, which uses classi-
fiers to predict individual actions of shift-reduce algorithms.

We define a configuration as a quadruple c = 〈S,B, T,D〉,
where

1) S: a stack that is a disjoint sublist of words,
2) B: a buffer that is a sublist of words to be processed,
3) T : a tag sequence that stores the result of POS tagging,
4) D: a dependency arc set that stores the result of depen-

dency parsing.
As shown in Table I, we define five categories of actions for

the transition between configurations:1

1) Shift: move the leftmost word from the buffer B to the
stack S;

1While it is possible to integrate two actions into one action (e.g., combining
SHIFT and TAGt into SHIFTt ) [13], we find that separating tag and label actions
(i.e., TAGt and LABELl ) from structural actions (i.e., SHIFT, LEFT, and RIGHT)
leads to significant improvements over using combined actions.

2) Left: combine the top two items on the stack, xm and xh ,
replace them with xh as the head, and add an unlabeled
dependency arc 〈h,m,⊥〉 to D;

3) Right: combine the top two items on the stack, xh and xm ,
replace them with xh as the head, and add an unlabeled
dependency arc 〈h,m,⊥〉 to D;

4) Tagt : assign a POS tag t to the last added word if the
previous action is SHIFT (i.e., |T | = N − |B| − 1);

5) Labell: assign a syntactic label l to the last generated
dependency arc if the previous action is LEFT or RIGHT

(i.e., D−1 .l = ⊥).
where N is the length of the input sentence. We follow Bohnet
and Nivre [13] to use ⊥ to denote an undefined syntactic label.
D−1 .l represents the syntactic label of the last added depen-
dency arc. Note that the first three actions are used to determine
the skeletons of dependency trees, which can be applied on con-
dition that all words removed from the buffer are tagged (i.e.,
|T | = N − |B|), and all generated dependency arcs are labeled
(i.e., D−1 .l �= ⊥).

Compared with the transition system of Bohnet and
Nivre [13], which integrates POS/dependency labels into the
SHIFT/LEFT/RIGHT actions, our transition system supports var-
ious pre-training techniques, which are important to improve
the performances of our model. For example, we can pre-train
the POS tagging related parameters on a separate POS tagging
neural model.

Table II demonstrates the process of joint tagging and depen-
dency parsing for the example in Fig. 1. The initial configuration
at step 0 is c0 = 〈∅, {x1 , x2 , x3 , x4}, ∅, ∅〉. In step 1, the action
SHIFT moves the leftmost word x1 (i.e., “He”) from the buffer B
to the stack S. Then, the action TAGPRP assigns a POS tag “PRP”
to the last shifted word “He”. In this way, the configuration keeps
changing by applying various actions until the terminal configu-
ration (i.e., the stack contains only one item, the buffer is empty,
all words are tagged, and all arcs are labeled) is generated.

C. Modeling

Given a sentence x with N words, tag sequence t and de-
pendency tree d corresponds to a unique sequence of action-
configuration pairs {〈ci, ai〉}4N−2

i=1 , as shown in Table II.2 Note

2We follow Chen and Manning [7] to map a parse to a unique sequence of
action-configuration pairs by using the “shortest stack” strategy.
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TABLE II
THE PROCESS OF JOINT POS TAGGING AND DEPENDENCY PARSING FOR THE EXAMPLE IN FIG. 1

Step Transition Stack (S) Buffer (B) Tags (T ) Dependencies (D)

0 He1 won2 the3 game4
1 SHIFT He1 won2 the3 game4
2 TAGPRP He1 won2 the3 game4 PRP
3 SHIFT He1 won2 the3 game4 PRP
4 TAGVBD He1 won2 the3 game4 PRP VBD
5 LEFT won2 the3 game4 PRP VBD 〈2, 1,⊥〉
6 LABELnsubj won2 the3 game4 PRP VBD 〈2, 1, nsubj〉
7 SHIFT won2 the3 game4 PRP VBD 〈2, 1, nsubj〉
8 TAGDT won2 the3 game4 PRP VBD DT 〈2, 1, nsubj〉
9 SHIFT won2 the3 game4 PRP VBD DT 〈2, 1, nsubj〉
10 TAGNN won2 the3 game4 PRP VBD DT NN 〈2, 1, nsubj〉
11 LEFT won2 game4 PRP VBD DT NN 〈2, 1, nsubj〉 〈4, 3,⊥〉
12 LABELdet won2 game4 PRP VBD DT NN 〈2, 1, nsubj〉 〈4, 3, det〉
13 RIGHT won2 PRP VBD DT NN 〈2, 1, nsubj〉 〈4, 3, det〉 〈2, 4,⊥〉
14 LABELdobj won2 PRP VBD DT NN 〈2, 1, nsubj〉 〈4, 3, det〉 〈2, 4, dobj〉

that the number of SHIFT actions is N , LEFT or RIGHT is N − 1,
TAGt is N , and LABELl is N − 1, where SHIFT and TAGt have
the same number as words, LEFT/RIGHT and LABEL have the
same number as dependency arcs.

As a result, the probabilistic model for transition-based joint
POS tagging and dependency parsing is defined as

P (t,d|x;θ) =
4N−2∏

i=1

P (ai |ci−1 ;θ)× P (ci |ci−1 , ai) (1)

Note that P (ci |ci−1 , ai) = 1 if and only if ai is a legal transition
between ci−1 and ci . Otherwise, P (ci |ci−1 , ai) = 0. Therefore,
we only need to focus on the action probability conditioned on
the previous configuration.

In our transition system, there are three types of conflicts:
1) Tag conflict: among all possible POS tags {TAGt |t ∈ T },
2) Shift/reduce conflict: between SHIFT, LEFT, and RIGHT.

For example, at step 5 in Table II, both SHIFT and LEFT

can be applied,
3) Label conflict: among all possible syntactic labels
{LABELl |l ∈ L}.

To resolve these conflicts, we develop three corresponding
neural network based classifiers. Note that the separation of
structural actions from tagging and labeling actions results in
three small classifiers with fewer classes (i.e., |T | classes for
the tag classifier, 3 for the shift/reduce classifier, and |L| for the
label classifier) rather than one big classifier with much more
classes (i.e., |T |+ 2|L|).

1) Basic Features: We use xn to denote the vector repre-
sentation of the n-th word xn . In our experiments, we follow
Kiperwasser and Goldberg [9] to learn xn using bidirectional
LSTM whose inputs are concatenations of randomly initialized
word embeddings with additional pre-trained embeddings as
well as character-based representations [3], [17]. We use tn to
denote the vector representation of the n-th POS tag tn , which
can be learned using a unidirectional LSTM based on randomly
initialized tag embeddings. Note that the bidirectional LSTM
feature representations for words are computed before joint POS
tagging and dependency parsing while the unidirectional LSTM

feature representations for tags are calculated during the search
on the fly.

2) Tag Classification: Resolving the tag conflict is a |T |-
class classification problem. Instead of using conventional fea-
ture templates that are highly sparse and inevitably incomplete,
we leverage a neural network based classifier. To determine the
POS tag of the last word added to the stack, which is represented
as xS0 , the input layer consists of the following representations:

1) xS1 : the word representation of the second item in the
stack,

2) tS1 : the tag representation of the second item in the stack,
3) xB−2 : the word representation of the second last item

removed from the buffer,
4) tB−2 : the tag representation of the second last item re-

moved from the buffer,
5) xS0 : the word representation of the first item in the stack,
6) xB0 : the word representation of the first item in the buffer.

where, xB−2 , xS0 , xB0 are window-based features that have
been widely adopted in previous work [4] and tB−2 models the
previous tag which has been widely used implicitly by markov
assumption in CRF models. Note that xB−2 , xS0 , xB0 are se-
quential words and xS1 is not necessarily identical to xB−2 due
to the RIGHT action.

We expect that these representations can provide useful con-
textual information for resolving the tagging ambiguity. Note
that the tagging classifier is capable of exploiting syntactic in-
formation encoded in xS1 and tS1 . The two features are not the
direct output of dependency trees, and thus we use the parsing
features for tagging in an implicit manner.

As shown in Fig. 2(a), the hidden layer is calculated as

hS0
tag = W(1)

tag [xS1 ; tS1 ;xB−2 ; tB−2 ;xS0 ;xB0 ] (2)

Then, the probability for tagging xS0 as t is computed at the
softmax layer:

Ptag (a|c;θ) = softmax
(
W(2)

tagh
S0
tag

)
(3)

where a ∈ {TAGt |t ∈ T }.
3) Shift/Reduce Classification: Resolving the shift/reduce

conflict is a 3-class classification problem. As shown in Fig. 2(b),
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Fig. 2. Examples to illustrate the three classifiers. (a) Tag classification.
(b) Shift/reduce classification. (c) Label classification.

we also use a neural classifier, in which the hidden layer is
given by:3

hparse = W(1)
parse [xS2 ; tS2 ;xS1 ; tS1 ;xS0 ; tS0 ;xB0 ] (4)

where S2 denotes the third item in the stack. Note that the
shift/reduce classifier is capable of exploiting lexical informa-
tion encoded in tS2 , tS1 , and tS0 .

Therefore, the shift/reduce classification probability is com-
puted as

Pparse(a|c;θ) = softmax
(
W(2)

parsehparse

)
(5)

where a ∈ {SHIFT, LEFT, RIGHT}.
4) Label Classification: Resolving the label conflict is a |L|-

class classification problem. As shown in Fig. 2(c), the corre-
sponding neural classifier takes the word and tag representations
of the first two items in the stack as input:

hlabel = W(1)
label[xS1 ; tS1 ;xS0 ; tS0 ] (6)

Clearly, labeling a dependency arc also depends on tag repre-
sentations tS1 and tS0 .

The label classification probability is computed as

Plabel(a|c;θ) = softmax
(
W(2)

labelhlabel

)
(7)

where a ∈ {LABELl |l ∈ L}.

D. Training and Parsing

Given a set of training examples {〈x(k) , t(k) ,d(k)〉}Kk=1 , the
training objective is to minimize the cross-entropy loss plus a
�2-regularization term:

θ̂ = argmin
θ

{
−

K∑

k=1

log P (t(k) ,d(k) |x(k) ;θ) +
λ

2
||θ||2

}
(8)

3Although it is possible to use hidden states in the tag classifier (e.g., hS 0
tag )

to replace tag representations tS 0 as suggested by Zhang and Weiss [18], we
find that it results in degenerate tagging and parsing results as compared with
Eq. (4).

In parsing, we follow Chen and Manning [7] to per-
form greedy decoding. The most probable tag sequence and
dependency tree corresponds to a sequence of action-
configuration pairs with the highest probability: {〈ĉi , âi〉}4N−2

i=1 ,
where

âi = argmax
a

P (a|ĉi−1 ; θ̂) (9)

and ĉi is obtained by applying âi to ĉi−1 .

III. EXPERIMENTS

A. Setup

1) Datasets and Evaluation: We evaluate our approach on
three datasets: the English Penn Treebank (PTB)4 with anno-
tated phrase-structure trees of English, the Chinese Penn Tree-
bank (CTB) version 5.15 with annotated phrase-structure trees
of Chinese, and the Universal Dependencies (UD) version 1.26

with annotated dependency trees across a number of natural
languages.

We use the standard splitting method to divide the PTB dataset
into training, development and test sections, and convert the
phrase-structure trees into dependency trees by the Stanford
dependency converter v3.3.0 [22]. For the CTB 5.1 dataset, we
follow previous work [11], [13] to split the dataset into training,
development and test sections, and use the Penn2Malt tool with
the head-finding rule of [23] to convert the phrase-structure
trees into dependencies. For the UD dataset, we follow Ammar
et al. [24], using the same subset of seven languages including
German (de), English (en), Spanish (es), French (fr), Italian
(it), Portuguese (pt) and Swedish (sv) and using the same data
splitting method.

For POS tagging, we use the standard tagging accuracy (POS)
based on words as the major evaluation metric. For dependency
parsing, we use two metrics, namely unlabeled attachment score
(UAS) and labeled attachment score (LAS), where UAS denotes
the ratio of the correctly-headed words with respect to the total
number of words, which considers only the head of a word, and
LAS takes into account the dependency label as well, and is
emlpoyed as the major metric to evaluate dependency parsing.

2) Hyper-Parameters and Training Details: We tune all
hyper-parameters in our models according the development re-
sults. Concretely, the dimension sizes of word, tag and character
embeddings are 150, 50 and 50, respectively. We use the same
pre-trained word embeddings for PTB and CTB 5.1 as Dyer
et al. [8],7 and do not use any pre-trained embeddings for UD,
and the dimension size of the hidden states in neural classifiers
is 300.

We exploit the Adam optimizer [25] to update model pa-
rameters during training, setting the hyper-parameters β1 and
β2 both to 0.9. Gradient clipping [26] by a max norm 5.0 is
used to avoid gradient exploding. To avoid overfitting, we use
�2-regularization by a parameter 10−8 as well as the dropout

4https://catalog.ldc.upenn.edu/LDC99T42
5https://catalog.ldc.upenn.edu/LDC2005T01
6http://universaldependencies.org
7We thank the authors very much for sharing their data with us.
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TABLE III
FINAL RESULTS ON THE DATASETS OF PTB AND CTB 5.1, WHERE THE

TAGGING ACCURACY BEING 100% DENOTES GOLD-STANDARD

POS TAGS ARE EMPLOYED

Method PTB CTB 5.1

POS UAS LAS POS UAS LAS

Joint models

Hatori et al. [11] – – – 93.94 81.33 –
Bohnet and Nivre [13] 97.42 93.67 92.68 93.24 81.42 77.91
Zhang and Weiss [18] – 93.43 91.41 – – –
this work (Joint) 97.54 94.18 92.26 95.58 83.99 81.39

Pipeline models

Dyer et al. [8] – 93.10 90.90 100 87.20 85.70
Kiperwasser and Goldberg [9] – 93.90 91.90 100 87.60 86.10
Andor et al. [19] – 94.61 92.79 – – –
Chen et al. [20] – 94.10 91.49 100 88.10 85.70
Dozen and Manning [21] – 95.74 94.08 – 89.30 88.23

this work (auto POS) 97.45 93.74 91.32 95.06 82.68 79.93
this work (gold POS) 100 94.73 93.53 100 88.75 87.53

We include the results of state-of-the-art previous transition-based parsers as well. In
particular, Andor et al. (2016) use beam search in decoding and Bohnet and Nivre (2012)
use a different method to produce dependency trees.

technique [27] with a drop rate of 0.25. Since the arc-standard
algorithm can only handle the projective trees, we apply a pro-
jectivization step to the training sets of the UD dataset.

B. Main Results

Table III shows the final results of our models on PTB and
CTB 5.1. We include the pipeline performances as well. Our
joint model brings significant improvements on both POS tag-
ging (POS) and dependency parsing (LAS) compared with the
pipeline model (the p-value is below 10−5 using pairwise t-test).
In addition, we compare our joint model with the baseline pars-
ing model using gold-standard POS tags, which can be treated as
the oracle performances of our joint model. Although the joint
model gives improved performances over the pipeline model, it
still has large spaces to reach the oracle performances, which
demonstrates the effect of POS tags in dependency parsing.

We compare our model with previous work as well. On the one
hand, we compare our joint model with previous joint models.
As shown in Table III, our neural joint model shows the high-
est results for both PTB and CTB 5.1, obtaining much higher
performances in dependency parsing, which demonstrates the
effect of the neural features. On the other hand, we compare
our baseline model with state-of-the-art transition-based depen-
dency parsing models.

Typically, the PTB results are reported by using auto POS tags
and the CTB 5.1 results are reported by using gold-standard POS
tags, respectively. Our baseline model produces strong enough
results for both PTB and CTB 5.1. In particular, Dozen and
Manning [21] is a graph-based neural model for dependency
parsing, which has achieved the top performance on the parsing
task. We leave it as a future work to investigate the joint models
under this framework.

TABLE IV
FINAL DEPENDENCY PARSING RESULTS (LAS) ON THE UD DATASET

Method de en es fr it pt sv AVG

Ballesteros et al. [17] 73.0 77.9 77.8 78.0 84.2 80.4 74.5 78.0
Zhang and Weiss [18] 74.2 80.7 80.7 80.0 85.8 80.4 77.5 79.9

this work (Pipeline) 74.6 80.6 80.6 78.9 84.9 81.6 77.6 79.8
this work (Joint) 77.1 82.5 82.5 81.2 87.0 83.1 80.4 82.0

Table IV shows the final results on the UD dataset. Joint
models also achieves significantly better results in comparison
with the pipeline models (p-value below 10−5), which is similar
to our finding on CTB 5.1. Besides, our joint model achieves
the best-reported results among the transition-based models,
even by using a greedy manner for decoding, which can be
attributed to the effective exploration of the interaction between
the tagging and parsing in our joint model, while no previous
work has studied it under the neural setting to our knowledge.
The work of Zhang and Weiss [18] resembles our work most,
which improve a feed-forward dependency parser by using POS
tags in a pipeline way by stack-propagation. While our joint
model benefits from the use of LSTM, and in addition, we find
that directly using the resulting tags rather than the penultimate
hidden representations of a tag classifier leads to better results.

C. Discussion

To investigate the effect of POS tagging on dependency pars-
ing, we conduct analysis on the CTB 5.1 dataset to illustrate the
effect of the joint model. Here we examine in detail to see the
benefits from the interaction between tagging and parsing in our
joint model. First, we can remove the tag representations from
parsing in Eq. (4) and Eq. (6):

h̃parse = W̃(1)
parse [xS2 ;xS1 ;xS0 ;xB0 ] (10)

h̃label = W̃(1)
label[xS1 ;xS0 ] (11)

Similarly, we can also remove the syntactic information from
tagging in Eq. (2) to investigate the effect of dependency parsing
on POS tagging:

h̃S0
tag = W̃(1)

tag [xB−2 ; tB−2 ;xS0 ;xB0 ] (12)

Table V gives the tagging and parsing results on the CTB
5.1 development set. We observe that disabling the interactions
between tagging and parsing significantly deteriorates both tag-
ging and parsing quality.

An interesting finding is that providing lexical information to
parsing (“tag → parse”) leads to more benefits than providing
syntactic information to tagging (“tag← parse”). This is because
tagging ambiguity is mostly local while dependency parsing
heavily depends on POS tags to predict syntactic structures.

Note that enabling “tag → parse” only also improves the
tagging accuracy itself. One possible reason is that tagging and
parsing is still connected via the sharing of word embeddings
and bidirectional LSTM hidden states although the connection
at hidden layer in classifiers is explicitly disabled.



YANG et al.: JOINT POS TAGGING AND DEPENDENCE PARSING WITH TRANSITION-BASED NEURAL NETWORKS 1357

TABLE V
INTERACTION BETWEEN POS TAGGING AND DEPENDENCY PARSING

Interaction POS UAS LAS

tag→ parse tag← parse

× × 95.19 83.38 80.66
× √

95.25 83.56 80.82√ × 95.50 84.10 81.59√ √
95.63 84.20 81.76

“tag → parse” denotes that parsing leverages lexical informa-
tion and “tag ← parse” denotes that tagging exploits syntactic
information. The interactions can be disabled as shown in Eq.
(10)–(12). The tagging and parsing results are evaluated on the
Chinese Penn Treebank development set.

IV. RELATED WORK

Our work is closely related to two lines of research: (1) joint
POS tagging and syntactic parsing using feature templates, and
(2) neural syntactic parsing.

A. Joint Modeling With Feature Templates

Most previous endeavors on joint POS tagging and depen-
dency parsing have focused on developing linear models with
feature templates [11]–[13], [28]. They introduce transition sys-
tems that can perform POS tagging and dependency parsing in
a joint search space.

Our transition system differs from previous work in the sep-
aration of structural, tagging, and labeling actions. This results
in three small classifiers with fewer classes (i.e., |T | classes for
the tag classifier, 3 for the shift/reduce classifier, and |L| for the
label classifier) rather than one big classifier with much more
classes (i.e., |T |+ 2|L|).

More importantly, we use continuous representations instead
of discrete indicator features to build the classifiers. As indi-
cated by Chen and Manning [7], lexicalized indicator features
crucial for improving parsing accuracy are highly sparse and
often incomplete. Alternatively, we resort to neural networks to
learn representations from data to circumvent the sparsity and
incompleteness problems. Another benefit of using neural net-
works is that there is no need to compose individual features to
obtain more complex features like conventional discriminative
dependency parsing [8].

It should also be mentioned that there are interactions between
the decisions regarding POS tagging and syntactic parsing in
research on constituent parsing [29], [30].

B. Neural POS Tagging and Syntactic Parsing

Our work is also inspired by recent advances in apply-
ing neural networks to POS tagging [4], dependency parsing
[7]–[9], [17], [19]–[21], [24], [31], [32] and constituency pars-
ing [33]–[36].

Among them, our work bears the most resemblance to [18],
which propose stack-propagation to integrate a tagging model
into a neural parser. They propose a stacked pipeline of models
and utilize POS tags as a regularizer of learned representations.

While Zhang and Weiss [18] use the hidden layer of the tagger
network as the input for the parser, we are interested in enabling
tagging and parsing to benefit each other in a joint search space.
As a result, the tagger is able to resolve long-distance tagging
ambiguity by exploiting syntactic information. Meanwhile, the
error propagation problem the parser faces can be alleviated due
to the cascaded error reduction by joint modeling.

V. CONCLUSION

We have presented an approach to joint part-of-speech tag-
ging and dependency parsing using transition-based neural net-
works. Based on a five-action transition system, we develop
three classifiers to resolve structural, tagging, and labeling con-
flicts. As our approach allows lexicality and syntax to interact
with each other in the joint search process, it improves over
previous work on joint POS tagging and dependency parsing on
three treebanks across a variety of natural languages. Our code
is released at https://github.com/tianlinyang/joint-parser.
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